M1. (a) enthalpy/energy change/required when an electron is removed/knocked out / displaced/ to form a uni-positive ion

(ignore 'minimum' energy)

1

from a gaseous atom

(could get M2 from a correct equation here) (accept 'Enthalpy/energy change for the process...' followed by an appropriate equation, for both marks) (accept molar definitions)

1

(b) 1s² 2s²2p⁶

(accept capitals and subscripts)

1

(c) 's' block

(not a specific 's' orbital – e.g. 2s)

1

(d) $Mg^{+}(g) \rightarrow Mg^{2+}(g) + e^{-} \text{ or }$

 $Mg^{\cdot}(g) + e^{-} \rightarrow Mg^{2\cdot}(g) + 2e^{-} \text{ or }$

 $Mg^{+}(g) - e^{-} \rightarrow Mg^{2+}(g)$

1

(e) Mg²⁺ ion smaller than Ne atom / Mg²⁺ e⁻ closer to nucleus (Not 'atomic' radius fo Mg²⁺)

1

 $\underline{Mg^{_{2^*}}}$ has more protons than Ne / higher nuclear charge or $\underline{e^-}$ is removed from a charged $Mg^{_2*}$ ion / neutral neon atom

(accept converse arguments)

(If used 'It' or Mg/magnesium/Mg³⁺ etc. & <u>2</u> correct reasons, allow **(1)**)

1

(f) (i) trend: increases

(if 'decreases', CE = 0/3)

1

Explⁿ: more protons / increased proton number / increased nuclear charge

(NOT increased atomic number)

1

same shell / same shielding / smaller size

1

(ii) QoL reference to the e- pair in the 3p sub-level (penalise if wrong shell, e.g. '2p', quoted)

1

repulsion between the e-in this e-pair (if not stated, 'e- pair' must be clearly implied) (mark M4 and M5 separately)

[12]

M2.B

[1]

M3. (a) $2AI + 3CuCl_2 \rightarrow 2AICl_3 + 3Cu;$ (accept multiples/fractions)

OR

 $2AI + 3Cu^{2+} \rightarrow 2AI^{3+} + 3Cu;$

1

(b) (i) increases;

1

(ii) lower than expected / lower than Mg /

1

less energy needed to ionise; e-removed from (3)p sub-level;

1

('e⁻ removed' may be implied)

of higher energy / further away from nucleus / shielded by 3s e-s;

1

(c) $AI^{+}(g) \rightarrow AI^{2+}(g) + e^{-};$ 1 (d) trend: increases; 1 more protons / higher charge on cation / more delocalised e-/ smaller atomic/ionic radius; stronger attraction between (cat)ions and delocalised/free/mobile e-1 OR stronger metallic bonding; 1 M4. (a) Energy/enthalpy (change)/ ΔH / needed to remove 1 mole of electrons; Allow 1 electron Not heat alone 1 From 1 mol of gaseous atoms; From 1 gaseous atom Not mix and match moles and one electron. Allow 1 for balanced eq with ss 1 (ii) Increase: If blank mark on If incorrect CE = 01 Increasing nuclear charge/ increasing number of protons; Not increasing atomic number 1 Same or similar shielding /same number of shells or energy

[9]

	levels/ (atomic) radius decreases/electron closer to nucleus; Not same distance from nucleus.	1
	(iii) Aluminium/Al; If incorrect CE = 0 Electron in higher energy /p or 3p orbital;	1
	Not 2p Ignore shielding	1
	Less energy needed to lose electron/ electron more easily lost/ ionisation energy less;	1
(b)	Silicon/Si; If incorrect CE = 0 If silicone, silica Si ₈ , Si ₄ mark on.	1
	Macromolecular/ Giant molecular or atomic or covalent; If IMFor ionic or metallic in Silicon then CE = 0 for explanation	1
	Many or strong <u>covalent</u> bonds need to be <u>broken</u> / lots of energy needed to <u>break the covalent</u> bonds; Not loosened bonds	1 [11]

(b) Trend: Decreases

[If trend wrong = $CE = 0$]	1	
Increase in size of ion/atom / more she decrease in charge size ratio	ells / decrease in charge density /	
Weaker attraction for delocalised/free/metallic bonding	sea of electrons / weaker	
[lgnore shielding] [van der Waals' etc. = CE	= 0 for M2 and M3]	[11]
M6. (a) Outer electrons are in p orbitals		
	1	
(b) decreases	1	
Number of protons increases	1	
Attracting outer electrons in the same	shell (or similar shielding)	
(c) Sulfur molecules (Տ։) are larger than բ	phosphorus (P₄)	
Therefore van der Waals' forces betwe	1 een molecules are stronger	
	1	
Therefore more energy needed to loos	sen forces between molecules 1	
(d) Argon particles are single atoms with	electrons closer to nucleus	
Cannot easily be polarised (or electron		[9]

[9]